integrals

英 [ˈɪntɪgrəlz] 美 [ˈɪntəgrəlz]
integrals
网络  积分

  1. We shall study double integrals over more general sets in the plane.
    我们将研究定义在平面上更一般的集合中的二重积分。
  2. In particular, a conjecture on complete elliptic integrals is proved to be true and improved.
    特别地,作者运用此法则,证明并改进了关于完全椭圆积分的一个猜测。
  3. So then we have integrals instead of sums.
    那么我们用积分代替求和。
  4. OK, so triple integrals over a region in space, we integrate a scalar quantity, dV.
    那么在一个空间上的区域的三重积分,对标量dV做积分。
  5. Other kinds of integrals we have seen are triple integrals.
    我们学过的另一种积分是三重积分。
  6. OK, so I proved that my two line integrals along C1 and C2 are equal.
    我证出了分别沿着C1和C2的两个线积分是相等的。
  7. In a few weeks, we will be triple integrals.
    几个星期后,我们会学习三重积分。
  8. So, it's much better to set up these integrals in spherical coordinates.
    所以球坐标的优势就显现出来了。
  9. It is given a evaluation formula for a class of infinite integrals by applying Parametric Variable integral transformation.
    应用含参变量积分变换的方法,给出了一类无穷积分的求值公式。
  10. The exact formulae of domain singular integrals for loads in polynomial form are given.
    对多项式荷载给出了域奇异积分的正确公式。
  11. Let's move on to work and line integrals.
    下面我们来复习功和线积分。
  12. And so that was stuff about double and triple integrals and vector calculus in the plane and in space.
    也就是二重和三重积分的内容,以及平面和空间中的向量积分。
  13. Study of the Singularity Integrals and the Boundary Layer Effect in Bem
    边界元法中奇异积分与边界层效应的研究
  14. Some of them compute different line integrals.
    它们中的一些在做不同的线积分。
  15. In this paper, we prove the first mean value theorem for definite integrals newly, introduce some betterment with its applications of the first mean value theorem for definite integrals.
    本文重新表述了定积分第一中值定理的证明,并改进了该定理,对于改进了的定积分第一中值定理还给出了证明及一些应用实例。
  16. Cauchy type integrals on AD regular surfaces in Clifford Analysis
    Clifford分析中AD正则曲面上的Cauchy型积分
  17. A calculating formula for surface integrals under orthogonal transformation of space coordinates is given.
    给出曲面积分在空间坐标的正交变换下的一个计算公式。
  18. A priori point-wise estimations are established for bounded functions satisfying a new class of nonlinear inequalities involving improper integrals.
    对满足一类新的含反常积分非线性不等式的有界函数建立了先验逐点估计。
  19. Line integrals are used extensively in the theory of functions of a complex variable.
    在复变量函数理论中广泛使用线积分。
  20. This paper discusses the asymptotic rate of mean value point in second mean vaule theorem for integrals.
    本文主要讨论了第二积分中值定理中值点的渐近速度。
  21. A Numerical Algorithm of Singular Integrals over Rectangular Domains The discretization of BIE is based upon constant elements.
    矩形域上非正常积分的一种数值算法边界积分方程的离散基于常数元模式。
  22. So, these are special cases of what's called the fundamental theorem of calculus for line integrals.
    这些都是反映了,线积分的微积分基本定理的特例。
  23. The difficulty of the treatment of the nearly singular integrals hindered applications of Boundary Element Method ( BEM).
    几乎奇异积分的计算困难阻碍了边界元法的工程应用。
  24. I mean, you are doing single integrals.
    我的意思是,做一元积分时。
  25. Doing area surface and volume integrals.
    作面积分和体积分。
  26. The difference equations derived will now contain integrals with respect to time because of the convolutions involved.
    由于包含卷积,所推导的差分方程包括对时间的积分。
  27. And, of course, we know also how to set up these integrals in polar coordinates.
    当然,我们也知道,怎样用极坐标来计算这些积分。
  28. Comparison Between Riemann Integral and Lebesgue Integral; Numerical integration of ordinary integrals and line integrals.
    Riemann积分与Lebesgue积分之比较一般的积分以及线积分的数值积分。
  29. Parseval Theorem in the Application of Solving the Generalized Integrals
    Parseval定理在广义积分中的应用
  30. That we can turn the sums into integrals.
    以至于我们可以把求和变成积分。